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ABSTRACT

The determination of an orbit by using two heciocentric
positions of a celestial body is a boundary-value problem of
mathematical physics, and may be reduced to the solution of
a nonlinear integral equation. Methods of successive approx-
imation to the solution are discussed, and convergence
conditions and error estimates are derived.

The problems of perturbed motion and the determination
of orbits based on three geocentric observations are also

considered.
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ON THE DETERMINATION OF ORBITS BY THE SOLUTION
OF A SYSTEM OF INTEGRAL EQUATIONS

V. T. Gontkovskaja

Bjull. Inst. Theoret. Astonom. 8 (1962), 283 -298
Translated from Russian by L. B. Rall
One of the basic problems of celestial machanics - the determination of

an orbit from two heliocentric positions - may be considered to be a boundary-

value problem of mathematical physics. Until recently, such problems have

been solved by integrating differential equations with given initial conditions.
This reduction .rom one problem to the other turns out to be possible only
because the perturbed motion differs only slightly from Keplerian motion in the
two-body problem, the general solution of which is known for any statement of
it (either as an initial-value or a boundary-value problem).

At the present time, a whole series of problems has arisen in cocnnection

with the conquest of space in which the perturbations are very large, and the
Keperlian orbit cannot serve as an approximate solution. Thus, the determination

of an orbit in such cases is only possible directly from the boundary-value

problem, for example, by reducing it to an integral equation.
This method was first proposed by Bucerius in his fundamental paper,
""Bahnbestimmung als Randwertproblem.' Bucerius not only stated the problem,

but also proposed a method for its solution. However, the method of successive
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approximation proposed by him for the solution of the system of integral equations,
to which the problem of determination of orbits from two heliocentric positions
reduces, contains a whole series of inaccuracies and does not have a rigorous
foundation. Indeed, for the method of successive approximation proposed by
Bucerius for the solution of systems of integral equations differing somewhat

from those given here, some conditions given for convergence are obtained as

a result of non-rigorous reasoning, and, what is very essential, Bucerius does not
have any error estimates whatever for his method.

In this paper, two methods of successive approximation are considered which
permit the solution of the problem posed by Bucerius. Sufficient conditions are
obtained for the convergence of the sequence of approximations to the solution,
the uniqueness of the solution obtained is proved, and, in addition, estimates
are given for the error committed by terminating the calculation at the nth

approximation.

§1. Statement of the Problem

The differential equations of motion in vector form are:

2 £(t)
E(t) = - k(1 + m)——r

. (1)
le(yl?

We introduce the vector 50( t), which satisfies the equation of uniform rectilinear

motion

£o(t) =0,

in the form

-72- #668




& R TN

SN YOI N e e - s " . 3 Wy S s - m:‘h.ﬁ‘“?":.‘.’. .
t, -t t-t
Lyl =t{t £]% -3'52’
21 2 1
where 1) and I, are determined by two heliocentric positions at the times tl
and t,. Thus, the vector r(t) -1 (t) satisfies a second-order differential

equatinn with zero boundary conditions, which properly completely define a
solution.

By means of the Green's function
= -t!
( t tl) ( tz t')

= ’ Rl
oY

G(t,t') =

G(t, t') = G(t',t)

the problem may be reduced to the solution of the nonlinear integral equation

t

2 '
r(t)=r (t)+k2(l+m)f G(t,t')"‘_r(t) dt . (2)
t, |r(th]

If the time tl is taken to be the beginning of the measurement of time,

and the difference t, - tl as a unit of time, then the time t varies over the

interval [0,1]. The kernel of the integral equation takes the form

Hl-t), t<t
K(t,t') =
tl-t), t>t

and equation ( 2) may be written in the following fashion

r(t')

1
£t =g t)+72fl(( t, t')—
0 le(t9]

dt' , (3)

#6€8 -3-
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where

T=kNl+m (tz-tl).

Since the vectors r, £»X, are coplanar, the relationship
r(t)-n(t)r +n(t)r , (4)

holds, where
nl( t) = nl( tt, tz,sl,zz) ,

(t) n (t, P 29 l’ )

Interpreted geometrically, nl, n, are the ratios of the areas of the triangles

[rr,] [£,z]

nl(t)= n(t) [r ]

With the help of relationship (4), the integral equation (4) reduced to the two

integral equations

. /

> 1 nl(t')

n(t) =1-t-l-7 [ K(t, 1) L )
0 |nl(t')£1+n2(t')£2|

1 n_(t')
n(t) =t+7 [K(t,th 2 at ) (5)
e 0 In(t)r +n (t")r P

IR R A,
Ingeg ey, = InZey 2 4nZ(ened 4 2n(eyn () (g p )27

§2. A Method of Successive Approximations Applied to the Nonlinear
Integral Equation

To solve equation ( 3), Bucerius (1950) proposed an interative method which
consisted of a sequence of applications of the mean-value theorem to the integral

on the right side.

e #668
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Suppose that 50( t) is taken as the initial approximation to the solution of

the integral equation( and the initial approximations to the ratios of the area as

T T
—rl- , —Ta ), then the first approximation is

Lot 2 1
£ =r (04 fl((t t—2—dt! = 0+ KLt (et .
lr,(t) ° ry 0

The average value of the quantity |£o( t')l3 in the interval 0 <t' <] is

denoted by rl3.
Introducing the notation
TZ
)\l ='rT ’
1
then

1
£fv=r t)+xlof1<( tthr (t)del .

The second approximation has the form

1 r.(t)
It =£o(t)+72 fK(t,t')—l——?dt' :
0 lg (0l

If the expression for _gl( t') is substituted into it, then
| 1
= ' ' ' 1 ' '
L) 50(t)+xzofl<(t,t)£0(t)dt +)\2>\lbfl(2(t,t Jr lthdt

where

N
[ ] -1
N W N

and K,(t,t') is the second iterated kernel.

For the vth iteration, one will obtain

4668 -5-
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1 1
] ! 1 ) 1 L]
_gv(t)=£o(t)+)\v6fK(t,t ) £t )dt+xvxv_lofxz(t,t JE(tdt +... 4

1
! ] |
+kav_l...)\l({Kv(t,t)go(t)dt , (6)
L2
)‘v =73
r
14

Kv( t,t') is the vth iterated kernel.

2
All kv satisfy the inequality xv <A =% , where h =minr(t) (0<t<l)
h
is the perpendicular issuing from the origin of coordinates to the chord I
2
Letting v go to infinity and replacing all xv in ( 6) by 7—3, one may consider
h
the series obtained to be the Neumann series for the equation
T2 1
r(t)=r (h+— [K(t, t) r(t)dt' .

A lower bound for the radius of convergence of this series is ( Wiarda, 1930)

11 -1/2 _
< | [ [Ix(t, ] %atar =310 ,
00

or \ §xl, where )‘l is the first characteristic value of the kernel K(t,t').

Consequently, if all xv i)‘l’ then the series ( 6) converges.

In applying the iterative process described above to the solution of equation
(3), Bucerius, gunerally speaking, started from the mistaken assumption that the
)\v do not depend on time, in the sense that they are the same for each orbit.

Indeed, xv = xv( t), and one has to prove the assertion that all r, 2h, from

which the convergence of the process of successive approximation follows.

-6- #668




' ,
AR I r L » - - s LS F ot DINE AN G T

§3. Solution of the Nonlinear Integral Equation by the Method of

Successive Approximations,

We apply to equation ( 3) the method of successive approximations in the

following form,

We first take r(t) =£n( t) and define 51( t} by the relationship

1

, ()
£t =r (1 +7° Kyt

0

rg( t')

dt' .

Continuing in the same fashion, we obtain an infinite sequence of functions

Tolth, £ (8,1 (0.,

which satisfy tt e recurrence relations

1 (t'
}j(t)=l‘(t)+T2fK(tt')———dt'. (7)
n ~0 5 (t,)

o0
We shall show that the sequence of vectors {g n( t) } ECUVEISes SRk

n=0

function which is a solution of equation ( 3).

For the proof, consider the difference of two successive approximations

() r (t")

r (t)-r (t)=72fl((t,t' “n-l e = dt' .

~n ~n-1 0 r3 (t") r3 (t')
n-1 n-2

The difference enclosed in square brackets may be written in the following

manner,
~n A _~’n-z“')Jr 8 2t L]k, 1“"‘ £p-2lt) .
AR RNV AR ()
(t')- r (t')
) nz(t')r (lt') .zl T (t')lr Il zl
n-1 n-2 rn-l( t') n-1 n-2 rn-Z( t')

#668 -7-
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In so far as

l
fK(t,t')dt'f_El for 0<t<l,
o .

2 (lr ,-r .| -r
T ~n-1 ~n-2 n-2 n-1, 1 1 1
- [
|£n(t) sn-l(t”— 8 3 u fn-2r_r ( 12 "
-I'n-2 r n-ln-2 r .
n-1 -1 n-2

and since the difference of two sides of a triangle is less than the third and

5n-z
|r | <1, one has that
n-2
max |r . (t)-r (b
5 (nor (] <L gstsL " 7o (8)
~n ~n-1 -2 min {3 I‘3 } !
0<t<l 'n-1""n-2
or
2 n-l
lx (v-r  (tl< max |r (t)-r ()| ——— , (9)
A 2 s B (P r}':
0<t<I
k=0,1,2, , =1 ‘,
Setting

zn( ty-r (v =4 (1),

we note that

n-l1
£ (0=r (+r (0-r (0]+[z,(t) -r(ol+ 4 (0-r (O]=r (1) +kL=o a.(v
and
Tz TZ n-l—]
r(t)<r(t)+a (t)|1+ — to | ——
n 0 0 2 min 1 (t) 2 min r3( t) J
0<t<]' o<t<1 "
-8- #668
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The geometric progression enclosed in square brackets converges for

2

T

3 <1. ( 10)
2 min rn( t)
0<t<1

Obviously, if condition (10) is satisfied, the sequence {~rn( t) } converges

to the function . ﬁ
R(t = lim {r (1)}

n-—» oo Ky

by virtue of inequality (9), uniformly, moreover, on the interval 0 <t <l in

as much as the estimate (9) is independent of t, ‘,‘;
Now, .

52 1

e e <1, (11) 4

2 min R°( t) i

0<t<1] i

since (10) is valid for all En( t), the limit of which is R(t).

The function R(t) satisfies equation (3). In fact, by virtue of the

uniform convergence of the sequence {5 n( t)} to R(t), by letting n—= % in
formula ( 7), one obtains that

, ] R(t) t

R(t) =r (t)+7° [K(t, t"y————dt' . !
~ ~0 3 f
0 R(t)

We shall prove that R(t) is the unique solution of equation (3) in the

region
2

—T_3<l. (12)
2 min r (t)

0<t<l

#668 -9-
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Indeed, suppose that there exists another solution p(t) which satisfies

condition (12). Then, by performing a calculation similar to the preceding, one

obtains that

ROV ey . 4l p(t) -R(t]
R o) T min [R(1), ()]
0<t' <l
Consequently,
1 R(t)  p(t) 2 |R(v-p(vl
IR(t -p(0] =| % [K(t,t) - dt' < 5 : 3 (05t<)),
0 R7(t') p(t") min [R7(t),p ()]
0<t<l
or
l : 1 1'2
R(t)-p(t){{1-= <o .
2 min [ Ry t),p3( t)]

0<t<l

The quantity in parentheses is positive, by virtue of the satisfaction of

conditions (1l) and (12). Dividing both sides of the above inequality by it, one

obtains that

I[R(D-p(0)] <0, (02t<D,
from which it follows that
IR(t-p(tl =0, (0<t<)).
We now derive a condition which guarantees the satisfaction of inequality

(10).

It follows from equation ( 7) that

2
r(t) >r (t) - u (13)
n -0 2
8 min r l( t)]
o<t<1 "7
-l0- #668




It is easy to seen that ro( t) is larger than the altitude h from the origin

of coordinates to the chord joining the points (xl, yl, zl) and (xz, yz, zz) .

Then,
.2
min r (t) >h - 5 : (14)
0<t<l 8min r 1( t)
o<t<1 "
Assume that
min rm(t)ikh, (m=0,1...,n-1), (15)

0<t<l

where k <1 is a positive number which we shall define below, Note that this
inequality is valid for m =0. We assume that it is valid for all m to n-l,

inclusive. With the help of inequalities (14) and (15), we obtain that

2
-
[} > ' —————
min rn( t) 2h >3
0<t<l 8k h
Requiring that
2
h - === >kh, (16)
8k h

we obtain that min r (t) > kh, so that we have proved this inequality for all
0<t<l]

n by means of the principle of mathematical induction. Thus, by virtue of (10),

the inequality
2

T

2k’

< 15 (17)

is a sufficient condition for convergence.
Both inequalities (16) and (17) are satisfied if one chooses k i% 2
Actually, (16) is a consequence of inequality (17) if one requires further

that

668 -11-
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Ls',,..ﬁw = = e = e
3.3
h - Zkzhz >kh,
8k h
from which
1
1 -Zk 2k,
or
4
k ig .

Consequently, the process of successive approximations described above

converges to a solution of our integral equation in case that

3 125 2
> =e2
h" 278" o

for which

min r (t)>=h,

0<t<1

(OIS

We now obtain an estimate for the error committed if the calculation is

halted at the nth approximation:

o0 n
° .
- < =
k=n
where
o = TZ < 125 ﬁ
2 min () — 128 43
0<t<l
Since
| r (t') 2 2
AO=TZ Srey o) D—art| < —T—— > 5-&12-
0 ro( t') 8 min ro( t) h
0<t<l
finally,
R
if = s - - "

#668
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n
125 1'_2_
128 .3
et -r (1] <% h
= I - 125 2
| l2s 1%
- 3
128 h
§4. The Application of Newton's Method to the Solution of a System of
Nonlinear Integral Equations. 5
Newton's method, sometimes called the method of tangents, is one of the 1

most effective methods for obtaining solutions of algebraic equations in the case
that an initial approximation is known for the value of the solution. The successive ‘

approximations are defined by a formula of the form

f
n+l n fi(x)
n
This method extends to systems of algebraic equations. It may be applied
( Kantorovi&, 1949) to classes of arbitrary nonlinear equations, in particular, to

classes of nonlinear integral equations,

We shall apply Newton's method to the system of nonlinear integral equations

| s
n(t=n(t) -1_Tzof Ut (), n(t)at il
, (18)
n (1) = no(t) -L-7% [ U_(t, ¢, n,(t1), n_(t')) dt
-2 =2 5 2 ’ ’_1 !_Z ’

for which initial approximations to the solutions may be taken to be n(l)( t), ng( t). ¥
[ >
g |
To obtain the first approximations, one adds to ﬂ?( t), r_1_2( t) the
corrections
1 | 0
1 1 0
#668
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determined from the linear integral equations

1 ou ouU 1
1 2 / __l) 1 __1_ 1 1 - 2 ' 0 ' 0 ; :
AI-T bf {( anl A1+(anz)oA2}dt =T JUl(t’t’El(t)’nz(t”dt ,

(19)
1

1 ouU aU
1 2 2| | 2| AL, 2 b nleny O

The second approximations glz( t), p_g( t) will be obtained by determining

2 2

} Al 3 Az from the system
!

1([aU 1) 1

2 2 1 2 2 0 | 2 1 1
BT f{(&x_ Af(ﬁl')AZ}dt':&l“’ -m(0 4+ [ U (), ny(thdt!

l 0 1°1 2°1 0

1(|aU :10) 1

0 171 21 0

with
2 1 2

n(t =n (v +47,

2 1 2

1]

finally, the nth approximation is determined by solving the following system of
linear integral equations:
au

17(aU ~
al-+*f {(a—l) 74| ) Ag}d"' -
0 Mo 2 In-1

1
=0y -0l (04l of Ut e, ey, ) e ar

s n 2 1 8U2 n aUZ n
e ) e
‘ 0 R 2 In-1

} ( 20)

: 0 n-1 2 n-1 n-1
=n,(t)-n, (t) +7 (_)fUZ(t,t',Bl (), o, (E)dt .
~

-14- #668
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In the case of interest to us, system (5), the functions U and the

derivatives

moreover,

#668

aUl E)U2
oy (i =1, 2) have the following form
E)n1 an1

K(t, t')n(t')

Ul=

H
[n?rzl' + n2+2n n 5152)]3/2

K(t, ) (t!)
U -

= ’
2 [n2r2+n2r2+ Zn n (rlrz)]3/2

aU1 3K(t, t')n(t' [n r2+n(r I )]

== ’
an2 r5

aUl_K(t,t') | 3nl[nr +n(rlr2)]
an, 3 -

1 r

v, -3K(t t')n (t')[nr +n (_5152)]

H
anl I_5

2
aU2 CK(Lt) 1 3n2[n22+n(r 2)]
dn, 3 B 2 A

2 r r

max {n(t), n (t)}

1
<t<
lfU(t tl)dt||<12-_".E1 6
0 min r (t)
O<t<l
M?% max {nlz( t), nz(t)}
l O<t<l
e l =
lf dt <3 :
min r (t)
0<t<l
2 { }
13U M™ max nl(t) n (t)
i 3 0<t<l
f an |5—§ 5
0 j min r(t)
0<t<l

(21)
<
) (22)
J
-15-
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T where M2 denotes the greatest of the four following quantities:

2
2r1+r

NN

+|(,§1_52)|,

r,+ | (r 01,

o-N NN

+|(rr |,

2
ry +2r2+|(51£2)| .

We shall obtain the conditions for convergence of the pricess of successive

approximations defined by formulas (20). We write them in the following form:

~
n (t)-n (t)+'r fU(t tr, l(t'),n:-l(t'))dt'+
au
,‘ + T fﬂ (8_1) Ag}dt' ,
' " nl "2 /n-1
; ( 23)

‘a, 1
n(t) =n% o+12 [ (e, v, a7y t), 02 e)) ar +
2 2 J 1 2

18U 3y
sl {(—a 2 ) AI’+(an—2) A'Z’}dt' -
0 n) 2 'n-1

n-1

Subtracting nil-l( t) from n?( t) and ng-l( t) from ng( t), one obtains

that
;
¥
>
[]
! -16- #668
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A?:rzbf[Ul( R T R T A TR OR A TS P I LR

118U aU au au .
_Tzf{(—a . A;"l+(a—1) A;—l}dt'+rzf{(—a;l) Ai‘+(3;1-) A,
0 R Ny In-2 0 1 In-1 2/n-1

1
a3 =Tzof[ i ni“l( t'), ng-l( ) -U,(t, ', n?'z( t'), ng'z( t')ldt' -

e,

U au auU ouU
= = . n
'Tzfl{(—a 2) A l+("—a £| A} l}dt'+72}‘{(—an2) A?+(—an2) Az}dt' :
0 n1 n-2 nZ n-2 0 1/n-1 2/n-1

-3

Using the notation

n

max {'IA1

0<t<1

A" = P

n _ { n n}
n°= max {n,n,},
0<t< 1

and representing the difference

Ut ¢, n?_l( t, ng_l( t) - Ut ¢, n?-z( t'), ng_z( t'))

by Lagrange'!s formula in the form

an An-l+ an An-l
H
E)n1 1 8n2 2
an
where the derivatives T (j =1,2) are taken at some intermediate points
}
n n-1 n-! n-2
n =n 4 eni(n1 -n.""), |°n1|il’ (i=12),

one has that

#668
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Anilz‘ o<t<l An-l +
» M max (gn-z)z , M7 max (g_n"l)2
T 0t ] n-1 7 o<t 1 n
+— A +— i A
2 5 2 5
min rn__2 min r -1
0<t<l o<t<1l "
From this, it follows that
- MZ max {(En-Z)Z’(En-l)Z} MZ max (En-Z)c
T 0<t<] T o<t n-1
2 5 5 2 5 ~
min {rn_z, rn-l} minr_,
n 0<t<1 0<t<l
AL 2 n-1 2 o E
2 M~ max (n )
LA -4
- 5
min rn-l
0<t<]
2.2 n-2.2 , n-l 2 "2 2 k.2 el
M max {(n" )%, (n" )"} T"M" max (n’)
0t <1 o<t
min {r'r;_z, rs_l} min ri
0t L n-1 o<t<l 1
< 2 R a = 2 k.2 A (29)
2M max (n ) 2M max (n’)
1T —0Sl - 11— ostsls
min r ] min rk
o<t<1 ™7 0<t<1
k=01,2...,n-1,
under the hypothesis that
k
> M2 max (n )2
LA 34 <1, ( 25)
2 5
min r
0<t<l
-18- #668
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We shall prove by mathematical induction that every

0

r >kh and n" “k'n ;
e LUSC 1 X

where k is a positive number less than 1, and k' is a positive number greater

than 1.

For n =0, these inequalities are obviously valid, in so faras r, > h,

0
We shall assume that it is valid for all rj and gj for j =1,2,...,n-1,
so that
> Ve (4 = 6
rj_kh,_rlikﬂ (i=42,...,n-1). ( 26)

If it follows from this that the inequality ( 26) is satisfied for j =n, then

it will be proved for all n.

By hypothesis,
(27)
by virtue of ( 24) and ( 26)

2211 2012,02 n-1

A" < kzh A, (28)

2 ’ (29)

4668 -19 -
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and ro and 20 satisfy the condition

Equation ( 23) and relationships ( 26), (28), (29) allow one to write the

following inequality:

2 =
T max n

0st<l

lnn-nol o

~='-%
min r
o<t<l ™”

It is required that

or
2.2 .20
(30)
Note that inegquality ( 30) guarantees thg_ satisfaction of (27). Now,
n O 1
In’-n >
TZMZQO
r5 .
0
-20- #668
- — . - -—-———-— -w..-«.... e e = S r..,-....



and - =
n_0 lfzk'ﬂo 1 1
n <n +-— 14—
- —— 8 k3h3 3 2 202
1+ MDD
-3
L r ol
0
We obtain an estimate for T
_.n n _,.n 0 n 0 0 0
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Then _rln < k'ﬂo . rn 2 kh, which proves inequality ( 26) for arbitrary n.

Inequalities ( 31) and ( 32) may be written in the following way:

1
1>
LS e 3 1 I ,
l__l T l+? >
83,3 L +2m2°
1l -
L r’
0
[ -
2, ,,0
k<1-2IXE 1,4 l
= T e 3 2. 2.0°
l_l'rMﬂ.
2 5

(33)

(34)

If k and k' may be chosen in order that (30), (33), (34) are satisfied,

then the process of successive approximations defined by formulas ( 20) converges.

From (33) and (34), assuming that equality holds, k and k' may be

determined by the method of successive approximations, taking k =k' =1 as

initial approximations.

It is possible to obtain convergence conditions more simply, which, however,

are cruder,

If one chooses initially that

<4
2’

then for this, the satisfaction of inequalities ( 33), (34) is sufficient to

guarantee the satisfaction of the following inequalities:
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Setting k =El, k! =%, the convergence conditions take the form

2

h3 > 10T

h? > 108M%2 |

By virtue of inequality ( 24), if condition (30) is satisfied, the sequences
of functions {n?}, {ng} converge to functions Ny, Ny, which are solutions of
the system ( 18).

One may convince oneself of this immediately by letting n =% in
equations ( 20).

The legality of passing to the limit under the integral sign follows from the
uniform convergence of the functions in the integrand, in as much as the estimate
( 21) is independent of time.

We shall prove the uniqueness of the solution ohtained in the region

2.2
T M max n

3 0<t<]l

= e <

2 min r>° L.
0<t<l

Suppose that there are other solutions n', n'2 which satisfy condition ( 30).

Consider the differences
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1
nl-n = T"of[ul( ¢, nl(t), nb(1) -U (L, ', n(t'), n ()] dt,

1
n!-n, = szf (U0t t!, nl(t), nb( £} -U(t,t!, n (t"), n ()]t .

Replace the increment of the functions Ui( t, B ni( t", n'z( t")) -Ui( txet)
' ' 1 = r _
nl( t'), nz( t')) by the differential at the point ni n, + eni( ni ni) i

len ‘ <1, (i=1,2) anduse the inequality (22) for
i

B3

In'-nl = max {|n'-n

|, 1nY -n
o<t< 1 172

2

which may be written

or

TZMZ max n'2

<t<]
| n'-nl ’?l O,—-L;l <0 .
min r
0<t<l

In as much as the expression in parentheses is positive, cne obtains

ln' -n|l <0,

which, by the virtue of the non-negativity of lg’ - 5| is only possible if

In' -nf=0.
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In order to obtain an estimate for the error committed if the calculation is

stopped at the nth approximation, we consider the difference

n-1
a

o0
ny _ n n k _
|ﬂ-_r_1_|—max{|nl—nl|,|n2-n2|}§k§nA =S

adt

where

k and k' satisfy inequalities (33), (34), h satisfies (30), and A' satisfies

inequality ( 29).

§5. The Case of Perturbed Motion.

If in addition to the attraction of the central body, a force mF acts on

N 3

the planet or satellite, then, instead of equation (1), the following equation

Ry AR 3
P i A

of motion holds:

r(t)
Y =k"(l+m——+ E(1) (35)
r(t)
The corresponding integral equation may be written in the form
2 1 r(th i
r(t)=r (v+7° [K(t, ') - F(thpde’ . (36)
0 r(t" e .
If the force mf is the perturbing action of a planet with mass m and
radius vector 55, equation ( 36) takes the form
~25-
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! r(t) m rth-r (ty r (t)
rlt=r t)+1'2fK(t,t') 4 == 2 + s dt'. (37)

0 el T - e o

Set

(y = nl( t)£l+nz(t)£2+ns( t:)«x:s ;

then equation (37) reduces to a system of three equations for the quantities

nl( t), nZ( t), ns( t) :

n(t') 3 b

ny(t) = n?( t)+72f K(t,t') ﬁ [1 i A, 3 |4t
0 r(t') lx(t)-r (] -
1 n_(t') m 3 0

n,(1) =ng(t)+TZfK(t,t') 2 [1+l+s e (¥) T |at',
0 r(t) "zt -r ()

1 n(t) m n (t')-1 m
n3(t) = Tzf K(t, t'){ 33 g 2 — 31 }dt' ,
0 r(t" - (t')| l4m rs( t!)

which may be solved by Newton's method.

nS = 0 as in the case of

0 0
As initial approximations one may take nl ; nz,

unperturbed motion.

§6. Determination of Orbits from Three Observations

Let t,t (t, <t <t denote the times of three observations chosen

piapty (2t 5t)

for the determination of an orbit. Each of the three observations permits writing

a relationship

(i =12,3), (38)

where pigi denotes the geocentric radius vector of the planet ( here, gi is

the unit vector indicating the direction to the planet, P is the geocentric distance),
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=

and R is the geocentric solar radius vector.

i

For the determination of the orbit given the directions €y to the planet

and the geocentric solar radius vectors Bi (i =1,2,3), the boundary values

r and~r

I 3 may themselves be unknowns, and have to be determined from some

system of equations,

To obtain these equations, one uses the relationships which connect the

geocentric coordinates for three given times
Ip=nf(t)r 40ty

or, by virtue of (38),

Pa8a ~ By =ny(t)lee ) =R ) 4n(t)) (0,8 5k )
[e,2,] [e,e,]
Multiplying this equation first by elec. ]’ then by e ]-, one
~]"~e~3 |h~2=3
obtains
[e.e.] o
. =2<3 -
)by = (n( IR #n ()R =R lor o T 4
(39) ‘
e e,
Ryl tde, =l ()R +nyt )R -R I Te e T
~]'~2~3
ele,esl #0.
The solution of system (39), together with the system
1 n(t')
n(t) =nl(t)+r2 [K(t, th) L dt!
1 1 2 3 4
0 | nl( t')_gl+n2( t');zl
( 40)
1 n_(t')
n( t):ng( t)+'rzf K(t, t') > e
] 1 4
0 |nl(t)£1+n3(t)_53.
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determines P and P3» and, consequently, I and Is-

As the initial approximation for the ratio of the area of the triangles, one

chooses n?,ng , Which are ratios of intermediate times
o3,
’ = ’
2 T2

where

T R R
=3
- O
1]
—el 4
f—y

T =kvV1l4m (t3-t2) :

-
i

le+m(%-H),

T =le+m(t2-H)

Substituting them into equation ( 39), one obtains PLs Py in the first approxi-

mation.

Approxiiiate values of r are determined with the aid of relationships

1’5 3
(38), and equations (40) are solved with them to obtain new values of nl, n3,
and so on. Therefore, equations ( 38) -(40) together permit the determination
of the geocentric distances Pps P 3o and, consequently, the geocentric radius

vectors r of the planet. Knowing these values, one may determine

1’f20%3

the elements of the orbit in the ordinary way.
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